
CloudPOS Scanning Service

1

CloudPOS Scanning Service Usage Document

Version=3.9.6

CloudPOS Scanning Service

2

Catalog

1. Purpose and Audience ..3
2. Project Background ...3

2.1. Advantages of Using the Custom Scan Service ..3
2.2. Scan Service Usage Overview .. 3

3. Guide to Scanning Interfaces and Parameters ... 4
3.1. Interface Description ... 4

3.1.1. Sync Scanning (scanBarcode): .. 4
3.1.2. Continuous Scanning (startScan): .. 4
3.1.3. Scan Result Callback Interface (FoundBarcode in IScanCallBack): .. 4
3.1.4. Stop Continuous Scanning (stopScan) ..5
3.1.5. getScanType(int index) ... 5

3.2. Parameter Introduction (ScanParameter) ...5
3.3. Scan Result (ScanResult) Description ..10
3.4. Scanner Mode: Functionality and Application ..11
3.5. Zebra Camera Scanning .. 12
3.6. Error codes ...13

4. Usage Instructions .. 13
4.1. Integration of Scanning Service: Step-by-Step Process ..13
4.2 Bind Service：Establishing Connection with Scan Service ...17
.. 17

5. Appendix: Barcode Formats ... 19

CloudPOS Scanning Service

3

1. Purpose and Audience

This document provides comprehensive instructions for using the Scan Service,
encompassing interface and parameter descriptions, along with methods for invoking
the service. It is primarily intended for developers utilizing the Scan Service in their
projects.

2. Project Background

2.1.Advantages of Using the Custom Scan Service

The smart POS devices operate on a customized Android system, enhanced to meet
specific requirements. Unlike standard Android systems, they don't inherently
include barcode or 2D barcode scanning capabilities. These functionalities are often
integrated using open-source services like Zxing/Zbar. Many applications on smart
POS devices have successfully implemented rapid scanning features. However,
numerous applications developed specifically for smart POS are not off-the-shelf
commercial solutions. A significant portion of smart POS developers comes from a
POS industry background rather than professional Android development.
Consequently, when embarking on application development, they prefer access to a
user-friendly scan API over the need to delve into the intricacies of Zxing/Zbar.
From a hardware perspective, the scanning components in smart POS devices often

diverge from standard cameras, necessitating modifications. In certain scenarios,
these devices require specialized scanning hardware. Direct application of Zxing/Zbar
is generally unsuitable for smart POS systems without specific adaptations and
customizations. Therefore, the development of the Scan Services aims to simplify the
integration of scanning functionalities for third-party developers, enabling them to
incorporate these features into their applications more efficiently and effectively.

2.2. Scan Service Usage Overview

The Scan Service operates as an application and is initiated using Android Interface
Definition Language (AIDL). This setup allows third-party applications to customize
their user interface (UI) by transmitting specific parameters to the service. This
design choice ensures flexibility and adaptability for developers, enabling them to
seamlessly integrate the scanning functionality into their unique application
environments while tailoring the UI to their specific needs and preferences. The use
of AIDL facilitates efficient communication between the Scan Service and third-party
apps, ensuring a smooth and responsive user experience.

CloudPOS Scanning Service

4

3. Guide to Scanning Interfaces and Parameters

3.1. Interface Description

3.1.1. Sync Scanning (scanBarcode):

This is a synchronous call interface. When invoked by an application, the Scan
Service activates the camera as specified by the scan parameters and initiates the
scan. Post-scan, the camera is deactivated, and the results are returned immediately.
Method ScanResult scanBarcode(ScanParameter parameter);

Parameters: ScanParameter

Return Type: ScanResult

3.1.2. Continuous Scanning (startScan):

An asynchronous call interface for initiating continuous scanning. When this
interface is called, the Scan Service opens the camera as defined by the scan
parameters and starts scanning. After each scan, results are returned via callback.
Upon completion of each callback, the next scanning process begins.
Method : void startScan(ScanParameter parameter,

IScanCallBack callBack);

Parameters: ScanParameter, IScanCallBack

Return Type: void

3.1.3. Scan Result Callback Interface (FoundBarcode in

IScanCallBack):

Essential for the startScan() method. This interface must be implemented to
receive the ScanResult. When this interface is called, the Scan Service enters a
paused state. After the call returns, the next scanning process resumes. The paused
scanning service can be terminated with stopScan.
Method : void foundBarcode(ScanResult result);

Parameters: ScanResult

CloudPOS Scanning Service

5

Return Type: void

3.1.4. Stop Continuous Scanning (stopScan)

Stops the continuous scan and turns off the Scan Service's UI. Post-stop, other
interfaces like startScan or scanBarcode can be invoked.
Method:boolean stopScan();

Return Type: Boolean, indicating success (true) or failure
(false).

3.1.5. getScanType(int index)
Retrieves the scanner type.
Method: String getScanType(int index);

Parameters: int index(0 or 1)

Return Type: String representing the scanner type: “Scanner”,
“Camera”, or “Error”.

3.2. Parameter Introduction (ScanParameter)

ScanParameter is configured through the method set(String key, String
value), where keys are case-insensitive and parameters are stored as key-value pairs.

Key Value Type Value
Range/Defaulte

Description

window_top int Default: 0
Range: >0

Distance from the top
of the screen to the
upper-left corner of
the window, effective
only in floating
window mode. Unit:
dp

window_left int Default: 0
Range: >0

Distance from the left
side of the screen,
effective only in
floating window
mode. Unit: dp

window_width int Default: Screen
width

Width of the scanning
window, effective only

CloudPOS Scanning Service

6

Range: >0 in floating window
mode. Unit: dp

window_height int Default: Screen
height
Range: >0

Height of the scanning
window, effective only
in floating window
mode. Unit: dp

enable_scan_section boolean Default: true
Range: True/false

If false, the entire
display window is the
scanning area,
removing the
scanning frame. If
true, a custom
scanning area is set,
not requiring the
entire image scan.
The scanning frame
will be centered and
can be adjusted in
width and height.

scan_section_width int Default: 300dp
Range: >0

Width of the scanning
frame.

scan_section_height int Default: 300dp
Range: >0

Height of the scanning
frame.

display_scan_line String Default: moving
Range:
No/fixed/moving

Display style of the
red line indicator
within the scanning
area. Options are no
display, fixed in the
middle, or moving up
and down.

enable_flash_icon boolean Default: true on
W1, false on Q1
Range: True/false

Whether to show the
floating button to
toggle the flashlight.

enable_switch_icon boolean Default: true
Range: True/false

Whether to show the
button to switch
cameras.

enable_indicator_light boolean Default: false
Range: True/false

Whether to show the
scanning indicator
light, supported only
on Q1 devices.

decodeformat String Default: Decoding range.

CloudPOS Scanning Service

7

BARCODE_ALL
Range: See
appendix for
barcode formats

Default is
BARCODE_ALL.
Multiple decoding
ranges can be
separated with a
comma.

decoder_mode int Default: 2
Range: 0/1/2

Scanning mode. 0 for
mode1, 1 for mode2,
2 for mode3.

enable_return_image boolean Default: false
Range: True/false

Whether to return the
recognized Bitmap
image.

camera_index int Default: 0
Range: 0/1/2

0 for the main
scanning head , 1 for
the secondary
camera , 2 for the
customer display
camera.

scan_time_out long Default: -1 (unit
milliseconds)
Range: >0

If ≤0, scanning is
continuous. If >0,
scanning occurs only
within this timeframe,
returning a timeout
error if exceeded.
Only effective for
synchronous
interfaces.

scan_section_border_c
olor

int Default:
Color.WHITE

Border color of the
scanning frame. Color
is passed as an int
value, can use
Color.argb method.

scan_section_corner_c
olor

int Default:
Color.argb(0xFF,
0x21, 0xDB, 0xD5)

Corner color of the
scanning frame.

scan_section_line_colo
r

int Default: Color.RED Color of the scanning
line.

scan_tip_text String Default: “Align the
image with the
scanning frame for
automatic
scanning”

Tip text displayed
below the scanning
frame.

scan_tip_textSize int Default: 15 Unit: sp
Description: Font size

CloudPOS Scanning Service

8

of the tip text below
the scanning frame.

scan_tip_textColor int Default:
Color.WHITE

Color of the tip text
below the scanning
frame.

scan_tip_textMargin int Default: 30 Unit: dp
Description: Margin
from the bottom of
the scanning frame to
the tip text.

flash_light_state boolean Default: false Initializes the state of
the flashlight switch.
True for on, false for
off.

indicator_light_state boolean Default: false Initializes the state of
the indicator light
switch. True for on,
false for off.

scan_mode String Default: dialog Scanning frame mode.
'dialog' for a
dialog-themed
activity, 'overlay' for a
floating window.

scan_camera_exposure int Default: 0 Camera exposure
compensation value.
Useful when scanning
QR codes from mobile
screens that are too
bright. The specific
value depends on the
camera used and
should be obtained
through the Camera
API. Effective only for
zoom cameras, not for
fixed-focus cameras.

scan_time_limit int Default: 50 Maximum decoding
time. Increasing this
value can increase the
success rate but
decrease scanning
speed. 50 is optimal

CloudPOS Scanning Service

9

and modifications are
not recommended.

enable_mirror_scan boolean Default: false Whether to support
mirror scanning.
Default is off.

enable_hands_free boolean Default: true HandsFree mode
enables motion
detection and motion
lighting. This mode is
used in continuous
scanning scenarios.
True to enable
HandsFree mode,
false to disable it.
Note: This feature is
available only for
Zebra scanners.

enable_ui_by_zebra boolean Default: true True to enable default
scanning UI. False to
hide it, which can
speed up the scanning
initiation. Note: This
feature is available
only for Zebra
scanners.

enable_mobile_phone_
screen_mode

boolean Default: false Mobile phone screen
scanning mode, which
can improve the
scanning recognition
rate. Enabling this
mode increases the
decoding time per
scan. Note: This
feature is available
only for Zebra
scanners.

enable_upca_country booleann Default: true True to pass the
country code after
UPC_A decoding.
False to hide the
leading country code.
Note: This feature is
available only for
Zebra scanners.

CloudPOS Scanning Service

10

enable_decoding_illum
ination

boolean Default: true True to turn on the
illumination light.
False to turn it off.
Note: This feature is
available only for
Zebra scanners.

enable_motion_illumin
ation

boolean Default: false True for constant
illumination light,
false to automatically
turn off the light
when no object
movement is
detected. Note: This
feature is available
only for Zebra
scanners in handsfree
mode.

enable_sound boolean Default: true true : enable sound for

decode bar;

false: disable sound for

decode bar.

3.3. Scan Result (ScanResult) Description

Key Type Description
resultCode Int Indicates the success or

failure of the scan. A value
greater than or equal to 0
signifies success; a value
less than 0 indicates
failure. Refer to the error
code definitions for more
details.

text String The string result of the
scan. This is returned only
when the scan is
successful. The text is in
UTF-8 format; if another
format is needed, convert
the rawBuffer accordingly.

rawBuffer Byte[] The raw byte stream result
of the scan.

bitmap Bitmap The image captured during

CloudPOS Scanning Service

11

a successful scan. This
field contains a value only
if the parameter
enable_return_image is
set to true.

barcodeFormat String The format of the barcode
scanned. See the appendix
table for barcode format
details.

3.4. Scanner Mode: Functionality and Application

This document outlines two distinct modes for integrating the scanner UI in
Android applications for smart POS systems: Dialog Mode and Floating Window
(Overlay) Mode.

 Dialog Mode
In Dialog Mode, the camera scanner service fully manages the scanner UI.
Developers integrating this mode don't need to design or manage the UI; it's

automatically handled.

 Floating Window(Overlay) Mode

In Floating Window Mode, users can customize the UI outside the scanning frame.
This allows simultaneous operation of their own UI and the scanning frame.
Therefore, customers can define their own buttons for switching the camera, toggling
the flashlight, and turning the indicator light on or off, as well as designing elements
like the title bar.

Control of switching the camera, toggling the flashlight, and the indicator light can
be achieved either through buttons on the scanning frame itself or by sending
broadcasts.

Switching the Camera:

Broadcast Action: com.cloudpos.scanner.setcamera
Broadcast Value Key: overlay_config
Values: 0 for the main scanning head, 1 for the secondary camera , 2 for the

customer display camera.

Toggling the Flashlight:

CloudPOS Scanning Service

12

Broadcast Action: com.cloudpos.scanner.setflashlight
Broadcast Value Key: overlay_config
Values: true to turn on, false to turn off.

Toggling the Indicator Light:

Broadcast Action: com.cloudpos.scanner.setindicator
Broadcast Value Key: overlay_config
Values: true to turn on, false to turn off.

The above values can be directly copied, but be mindful of case sensitivity or use
constants from ScanParameter.

Example for turning on the flashlight：

Intent intent = new Intent();
intent.setAction(ScanParameter.BROADCAST_SET_FLASHLIGHT)

;
intent.putExtra(ScanParameter.BROADCAST_VALUE, true);
sendBroadcast(intent);

It's important to note that in this mode, the scanning window cannot capture the
back and home keys. Developers need to override the onKeyDown method to
capture these key operations and call the stopScan method. Failing to do so may
result in scenarios where the user's page disappears, but the scanning window
remains active.

3.5. Zebra Camera Scanning

To use the Zebra camera for scanning, the following conditions must be met:

Existence of Zebra Camera: The terminal device must be equipped with a Zebra
camera.
ScanParameter Setting: The scanning head needs to be set as the main scanning

head (0) in the scan parameters.
Screen Off Limitation: When the screen is off, the Zebra camera will not be

functional.

Manually hide UI: When using the Zebra camera for scanning, it's necessary to
manually set parameters to hide the UI. This can be achieved by setting the
enable_ui_by_zebra parameter to false. This setting will effectively hide the UI
during Zebra camera scanning operations.

CloudPOS Scanning Service

13

3.6. Error codes

Value Description
1 Success:Indicates that the scanning

operation was successful.
0 User Cancelled: The user has cancelled

the scanning operation.
2 Scan Window Fully Visible Notification:

Notification that the scan window is fully
visible on the screen.

-1 Scan Service Occupied: The scanning
service is currently in use or occupied by
another process.

-2 Scanner/Camera Cannot Be Opened: The
scanning head or camera could not be
opened, possibly due to hardware issues
or conflicts.

-3 Scanning Timeout: The scanning process
exceeded the allotted time limit without
successfully reading a barcode.

-4 Parameter Error: There is an error in the
parameters provided for the scanning
operation, which could include incorrect
values or formats.

4. Usage Instructions

4.1. Integration of Scanning Service: Step-by-Step Process

The scanning service described in this document is invoked through the Android
Interface Definition Language (AIDL). This requires the inclusion of necessary AIDL
files in the project.
To successfully integrate the scanning service, you will need to include several

specific files. These files are essential for the proper functioning of the scanning
service and ensure seamless communication between the application and the service.
The detailed steps for including these files will be outlined in the subsequent sections,
tailored for Android Studio environments.
To integrate the scanning service, the following files are required:

CloudPOS Scanning Service

14

Separate AIDL and Java Files: The AIDL files and Java files need to be placed in
separate folders within your project structure. This separation is crucial for
maintaining a clear project organization and ensuring that the build system correctly
processes these files.

 Creating an AIDL Folder in Your Project:

1. Navigate to the "src--main" directory in your project.
2. Right-click and create a new folder within this directory.
Name this new folder "aidl".

 To create a new package named com.cloudpos.scanserver.aidl in the
aidl folder and place four AIDL files from the scanning SDK in it, follow these
steps:

1. Locate the aidl Folder: In the 'Project' view, find the aidl folder. It's usually
located in the src/main/ directory of your app module.

2. Create a New Package: Right-click on the aidl folder. Choose 'New' > 'Package'.
Enter com.cloudpos.scanserver.aidl as the package name and
confirm by clicking OK.

CloudPOS Scanning Service

15

3. Add AIDL Files:

1) Copy these files.
2) Navigate to the newly created com.cloudpos.scanserver.aidl

package.
3) Paste the AIDL files into this package.

 To create a new package named com.cloudpos.scanserver.aidl under
the src/main/java directory and add two Java files from the scanning SDK to this
package in your Android project, follow these steps:

1. Locate the src/main/java Directory: In the 'Project' view of Android Studio,
navigate to the src/main/java directory. This is the standard location for Java
source files in an Android project.

2. Create a New Package: Right-click on the java directory. Choose 'New' > 'Package'.
Enter com.cloudpos.scanserver.aidl as the package name and click
OK.

3. Add Java Files from the Scanning SDK:
1) Copy these files from their current location.
2) Navigate to the newly created com.cloudpos.scanserver.aidl

package in your project.
3) Right-click on the package and select 'Paste' to add the files.

CloudPOS Scanning Service

16

 Sync and Build Your Project: After adding the AIDL files and Java files, use the
'Sync Project with Gradle Files' option in Android Studio to sync your project.
Then, build your project to compile the new files and ensure there are no errors.
If you successfully compile files in the build/generated/source/aidl/debug
directory of your Android project, it indicates that the AIDL (Android Interface
Definition Language) files have been properly processed, and the corresponding
Java interfaces have been generated. This means you are now ready to use these
interfaces to communicate with the service defined by the AIDL files.

CloudPOS Scanning Service

17

4.2 Bind Service：Establishing Connection with Scan Service

1. Place the Interface and Implementation:

The interface IAIDLListener and its implementation should be placed in any
package within your project. Make sure they are properly imported wherever used.
Obtain the interface and its implementation from the \source\aidlControl directory

in the barcode SDK package.

2. Bind to the Scanner Service:

Use the AidlController.getInstance().startScanService(this,
this); method to bind to the scanner service.
The first this in the method call refers to the Context, typically your Activity or

Application, and the second this refers to the IAIDLListener implementation.

3. Implement the IAIDLListener Interface:

Implement the IAIDLListener interface in your Activity or other component
from where you wish to use the scanner service.

CloudPOS Scanning Service

18

In the serviceConnected method, check if the objService is an instance of
IScannService. If so, assign it to a local variable (scanService) and keep a reference to
the ServiceConnection (scanConn).

private IScannService scanService;
private ServiceConnection scanConn;

@Override
public void serviceConnected(Object objService,

ServiceConnection connection) {
if(objService instanceof IScannService){

scanService = (IScannService) objService;
scanConn = connection;

}
}

}

4. Use the Scanner Service:

Once the service is connected and you have a reference to IScannService, you can
use this reference to call functions provided by the scanner service.

5. Unbind from the Service:

To properly clean up, unbind from the service when it's no longer needed or when
your component is being destroyed.
Ensure that scanService is not null before calling unbindService(scanConn) and then

set scanService and scanConn to null to avoid memory leaks.

@Override
protected void onDestroy() {

if(scanService != null){
this.unbindService(scanConn);
scanService = null;
scanConn = null;

}
super.onDestroy();

}
6. Refer to the Demo Project:

For detailed implementation and usage, refer to the demo project provided with
the barcode SDK package. This will likely have examples of how to use the scanner
service effectively.
Remember to handle any exceptions appropriately and ensure that all resources

CloudPOS Scanning Service

19

are released when no longer needed. Also, ensure that your application has the
necessary permissions to use the scanner service, especially if it involves hardware
access.

5. Appendix: Barcode Formats

Usage Method: To specify the barcode formats for scanning, use the ScanParameter
class. Set the desired formats using ScanParameter.KEY_DECODEFORMAT.
Example:

ScanParameter parameter = new ScanParameter();
parameter.set(ScanParameter.KEY_DECODEFORMAT, "AZTEC,

QR");
Compound Barcode Formats(

In addition to specifying individual barcode formats, you can use the following
special strings to encompass multiple formats)
BARCODE_ALL Includes all listed barcode formats.

BARCODE_1D Includes all 1D barcode formats listed
below.

BARCODE_2D Includes all 2D barcode formats listed
below.

Barcode Formats
AZTEC 2D barcode
DATAMATRIX 2D barcode
QR 2D barcode
MAXICODE 2D barcode
PDF417 2D barcode
CODABAR 1D barcode
CODE39 1D barcode
CODE93 1D barcode
CODE128 1D barcode
EAN8 1D barcode
EAN13 1D barcode
ITF 1Dbarcode(Interleaved Two of Five)
RSS_14 1D barcode
RSS_EXPANDED 1D barcode
UPCA 1D barcode
UPCE 1D barcode
CODE11 1D barcode

	1.Purpose and Audience
	2.Project Background
	2.1.Advantages of Using the Custom Scan Service
	2.2.Scan Service Usage Overview

	3.Guide to Scanning Interfaces and Parameters
	3.1.Interface Description
	3.1.1. Sync Scanning (scanBarcode):
	3.1.2. Continuous Scanning (startScan):
	3.1.3. Scan Result Callback Interface (FoundBarcode in I
	3.1.4. Stop Continuous Scanning (stopScan)
	3.1.5.getScanType(int index)

	3.2.Parameter Introduction (ScanParameter)
	3.3. Scan Result (ScanResult) Description
	3.4.Scanner Mode: Functionality and Application
	3.5. Zebra Camera Scanning
	3.6.Error codes

	4.Usage Instructions
	4.1. Integration of Scanning Service: Step-by-Step Pro
	4.2 Bind Service：Establishing Connection with Sca

	5.Appendix: Barcode Formats

