CloudPOS Remote Key Injection

Demo System

V1.1

H %

1 Summary

2 Definitions

3 Key Injection

3.0 COTC PFOCESS ..ottt
3.2 Connection ProteCtion..................ccccccuueeeeeiieeeeieeiiieieeeeeeieeeeeeeiee e

3.3 POS terminal Initialization...............cccccccoooevivieeeeeeiiieeeeeeciieeeeeeeieeann

4 Generate Public Keys

4.1 Create an XCA DB.........cccccocviiiiiiiiiiiiiiiiiicicccieeeee e
4.2 Create OWner Key Pailc.ccooviioiiiiiiiiiiiiiiiieec et
4.3 Create Key Injector Host Key Paircccccccovieioiiniiiniiiiiiiieeenn

4.4 Prepare For POS terminal Initializationcccccovvevcenoenceneennen.

5 Initialization

6 Demo System

0.1 FUNCHIONS ...ttt et
6.2 Running RemoteKeyInjectServercoouvuiiiiinienieinieneeeiieneeaeees
6.3 Running InjectKeyDemocccouceiveeecieeiieiieeeesie et
6.4 Secure COMMURICALION..............ccccecuirieeiiiieiiiieei et
6.4.1 POIECle USAZEeovievvirieriiiiieiecieeie ettt ettt eseesaeesaesseennas
6.5 Agent in POS terminal (InjectKeyDemo)cccccvceroencincnieaaenne.
6.5.1 Manifest and PermiSSionsccceveereeieneeienieeecee e
6.5.2 Source Code StIUCTUIEevuieiieieiieieie et
6.6 Host Application(RemoteKeyInjectServer)ccccuceuveecesvecennnenn.
6.6.1 Main data StIUCLUIEccueeueieieieeeieie et

6.6.2 Configuration fileooieiiiiieiiiiee e

7 POS terminal Key Injection API Guide

7.1 Key Injection AIDL Java APlccccccoueeiieiiiaiiiniieiesie e
7.1.1 EtAULINTO .ottt
7.1.2 IMPOrtKeyIntfocccvivuieiiiieiicieecee e

7.2 POPMISSION ..o

15

15
15
16
16
17
18
34
34
34
36
36
37

Version

Author

Date

Description

1.0

Hans

2018-03-02

1 Summary

The cloudPOS remotely key injection mechanism support mutual authentication
between POS terminal and Key Injector.

2 Definitions

Host Key Injector Host

POS Root Key Private key of root asymmetric key pair, stored in HSM of POS
terminal.

POS Root Public Key Public key of root asymmetric key pair, stored in host.

Host Root Key Private key of host asymmetric key pair, stored in host.

Host Root Public Key Public key of root asymmetric key pair, stored in terminal.

3 Key Injection

3.1 Core Process

Basically, the key injecting process includes 4 steps:

@ Authinfo
(PubKeyP, Rand, SN, SignatureP)
7>
i Verify Authinfo
POS ® Keylnfo Key’_l'rc\}J:\tctor Generate Keyinfo
(PubKeyH, Rand, enc{KeyData), SignatureH)

Verify Keylnfo g

Store ta HSM o K3 HSM —

POS Send AuthInfo: The application in POS gets the AuthInfo via the HSM API,

then sends it to host. AuthInfo contains:

PubKeyP: The public key of each POS. It is stored in a certificate file
signed by POS Root Key. So it can be verified by the POS Root Public

Key.

Rand: The 32 bytes random data generated by the HSM of POS. It’ s

unique for each key injection transaction.

SN: The hardware serial number. It’ s unique for each POS terminal.

SignatureP: The signature of the data including SN and Rand. The
algorithm is SHA256withRSA.

Host Verify AuthInfo: Host verify the AuthInfo data, after the host receive
them. Host use the POS Root Public Key to verify the PubKeyP, then use
the PubKeyP to verify the SignatureP. So the Host will know if the

AuthInfo is come from a trusted POS terminal.

Host Send KeyInfo: The Host generate the KeyInfo data and send to POS

terminal. The KeyInfo data contains:

PubKeyH: The public key of the Host. It is stored in a certificate file
signed by Host Root Key and it can be already injected in the POS when

initializing POS terminal.

Rand: The 32 bytes random data which is received from POS terminal in

the AuthInfo data.

ENC (KeyData) : The encrypted data of KeyInfo. It’ s encrypted by PubKeyP
(the public key of the POS terminal). The algorithm is
RSA/ECB/PKCS1Padding.

SignatureH: The signature of the data including Rand and ENC (KeyData).
The algorithm is SHA256withRSA.

POS terminal Verify KeyInfo: The application in POS terminal will inject
the KeyInfo, after it get it from Host. The HSM model of the POS
terminal will verify the PubKeyH by the existing Host Root Public Key,
and verify the SignatureH by the PubKeyH. If success, the HSM get the
decryption data the KeyInfo by its own POS terminal PrivKey and store
the data.

3.2 Connection Protection

SSL/HTTPS Connection
@ Authinfo
(PubKeyP, Rand, SN, SignatureP)

Verify Authinfo

Key Injector

@ £os @ Keylnfo eyHuJEt Generate Keyinfo
(PubKeyH, Rand, enc{KeyData), SignatureH)

Verify Keylrfo I: T

Store to HSM \ \/ HSM e

The POS terminal and the Key Injector Host can connect each other in internet. So the
application in POS terminal can use SSL/HTTPS connection with Host.

3.3 POS terminal Initialization

The Host Root Public Key should be stored in the POS terminal as the trusted key at the
beginning. cloudPOS terminal is designed to use simple certificate file to protect and store the
trusted Host Root Public Key.

POS

ROM HSM

Vendor Owner Host Root POS Root
Root PubKey PubkKey Pubkey PubKey

Issue

|55U

Figure 1.
Vendor Root PubKey: Verndor Root Public Key. The public key of the
vendor. It is been initialized in the ROM of the POS terminal. It is
used to verify the first POS Owner PubKey (the future POS Owner PubKey
are verified by the previous Owner PubKey).
Owner PubKey: Owner Public Key. The public key of the POS terminal
owner who buy the POS terminal. It controls what the public key of

which Key Injector Host can be loaded to POS terminal.

Host Root PubKey: Host Root Public Key. The public key stored in POS

terminal to authenticate the Key Injector Host

PriKey/PubKey: The private/public key pair is unique of each POS

terminal. And the private key is only stored in one POS terminal.

POS terminal Root PubKey: POS Root Public Key. This public key is used
to authenticate the POS terminal PubKey. It can be used by Key Injector

Host.

The PriKey and PubKey of POS terminal are already initialized when terminal is in factory.

We as the POS vendor will help the POS terminal owner to initialize the Host Root Public
Key to POS terminal.

4 Generate Public Keys

There are many tools to generate the public keys, including OPENSSL, XCA... In this
document, we use XCA GUI tool to demonstrate how to generate the public keys.

4.1 Create an XCA DB

To create an XCA DB, follow these steps:
1. Launching the XCA.

2. Select File > New Database, input the db name, to create your owner public keys database.
Please keep it safely and privately.

4.2 Create Owner Key Pair

To create the Owner Key Pair, follow these steps:
1. In Private Keys tab, click New Key to create the key pair with 2048 bit size.
2. In New Key window, input the name, select 2048 bit, click Create.

Private Keys | Certificate signing requests Certificates | Templates = Revocation lists

RUECNEINCIEIR ™) X Certificate and Key management

New key

E
Please give a name to the new key and select the desired keysize Ert

Key properties

Namne [Myowner]

Keytype |RsA - :
= e
Keysize | 2048 bit X
| Remember as default
Cancel | create |

Database: /home/disk500g/temp/remotelyKeylnjectionDemo/RKIDemo.xdb

Figure 2. New Key

% X Certificate and Key management

Private Keys | Certificate signing requests | Certificates | Templates | Revocation lists

Internal name = Type Size Use Password

- — RSA 2048 bit 0 Common New Key
Expork
Import

Import PEX (PKCS#12)

Show Details

Delete

Database: /home/disk500g/temp/remotelyKeyinjectionDemo/RKIDemo.xdb

Figure 3. Private Keys of Main window after key created

Then generate the CSR for Owner Key. This CSR file will be used to generate self-signed
certificate in XCA, and it will be submit to us. We will issue the new owner certificate

To Create the Owner CSR and send to us, follow these steps:
1. In Certificate signing requests tab, click New Request.
2. In Source tab, set signature algorithm as SHA 256.

e,
Create Certificate signing request ﬁ@ﬂw

Source | Subject | Extensions | Keyusage | Metscape Advanced

Signing request
unstructuredName

challengePassword

Signature algorithm SHA 256 =

Template For the new certificate

[default] cA -
Apply extensions Apply subject Apply all
Cancel oK |

Figure 4. Source of Create Certificate signing request

3. In Subject tab, set Subject’s distinguished name as your company information. Please set
the internal name, organizationName, countryName, organizationUnitName,
stateOrProvinceName, commonName, localityName, emailAddress to your real information.
Select the private key created just now.

B ""\‘
Create Certificate signing request M_‘

Source | Subject | Extensions | Keyusage | MNetscape | Advanced

Distinguished name

Internal name | MyOwner organizationName

countryMame organizationalUnitName

stateOrProvinceMame commonName | MyOwner

localityMame i | emailaAddress

Type Content Add
Delete
Private key
MyOwner (RSA:2048 bit) 2| BF usedkeystoo | Generateanewkey |
Cancel [oK J

Figure 5. Subject of Create Certificate signing request

4. In Extension tab, set type as certificate authority (actually your certificate needn’t to be CA,
it’s just for XCA manage the certificate easily).

= X Certificate and Key management

Create Certificate signing request

Source | Subject | Extensions | Keyusage | Netscape | Advanced

X509v3 Basic Constraints Key identifier
Type | Certification Authority = [] Subject Key Identifier
Path length | | [critical

X509v3 Subject Alternative Name Edit
X509v3 Issuer Alternative Name Edit
%509v3 CRL Distribution Points) Edit
Authority Information Access _OCSP : | | Edit

Cancel [OK. J

Figure 6. Extensions of Create Certificate signing request

5.In Key Usage tab, set the proper key usage flag for owner key according
TerminalCertificateGuide en.pdf.

e X Certificate and Key management

Create Certificate signing request

Source | Subject | Extensions

| Key usage | Netscape

X509v3 Key Usage
B Critical

Digital Signature
Mon Repudiation
Data Encipherment
Key Agreement
Certificate Sign
CRL Sign

Encipher Only
Decipher Only

Advanced

X509v3 Extended Key Usage

|_| Critical

TLS Web Server Authentication
TLS Web Client Authentication
Code Signing

E-mail Protection

Time Stamping

Microsoft Individual Code Signing
Microsoft Commercial Code Signing
Microsoft Trust List Signing
Microsoft Server Gated Crypto
Microsoft Encrypted File System
Netscape Server Gated Crypto
Microsoft EFS File Recovery
IPSec End System

IPSec Tunnel

IPSec User

IP security end entity

Microsoft Smartcardlogin

OCSP Signing

EAP over PPP

EAP over Lan

KDC Authentication

Cancel

Figure 7. Key usage of Create Certificate signing request

6. Click OK to create the owner CSR.

X Certificate and Key management

Private Keys | Certificate signing requests | Certificates
Internal name = commoniame Signed
M MyOwner MyOwner Unhandled

Templates

Revocation lists

Mew Reguest

Export

Import

Show Details

Delete

Database: /home,/disk500g/temp,/remotelykeyinjectionDemo/RKIDemo.xdb | |

Figure 8. Certificate signing requests of Main window after create owner CSR

10

7. In Certificate signing requests tab, click Export.

X Certificate and Key management | l 2 |

Certificate request export f’kﬂ ;_-_-_."

Hame Mwowner
Filename C:hUsers'ihdministratorMyowner. pem [:]
PEM Text format with headers

Export Format

PEM (% . pem] -

Figure 9. Certificate request export
8. Click OK to export the CSR. Then send it to support@wizarpos.com, and wait the reply.
To Import the certificate replied, follow these steps:
1. In Certificates tab, click Import.
2. Select the replied certificate to import.

X Certificate and Key management

Private Keys | Certificate signing requests | Certificates | Templates | Revocation lists

Internal name = commonName CA Serial Expiry d
MyOwnei Myowies Yag 01 Z0SE—_03 Mew Certificate
MR MrOMEC MOS8 03 203803
Export
Import

Show Details
Delete
Impork PRCS#12

Import PKCS#7

Plain View

Database: /home/disk500g/temp/remotelyKeyinjectionDemo/RKIDemo.xdb

Figure 10. Certificates of Main window after import certificate

4.3 Create Key Injector Host Key Pair

Assume the Key Injector Host Key Pair will be used in a Tomcat server, so we generate the
key in a JKS keystore.

To get and export the host certificate, follow these steps:

1. Use follow command to generate the key pair in myhost.jks file:

keytool -genkeypair -keystore = myhost.jks -keyalg = RSA -keysize @ 2048 -alias myHost -dname
"CN=MyHost, EMAILADDRESS=myname@abc.com" -validity 7300

In the command, bold part should be modified to real information. We only write CN and
EMAIL in -dname, you can write other option dname information. -validity is to set valid

11

mailto:support@wizarpos.com,

days, default is 90 days.

2. Use follow command to generate the CSR of host key:

keytool -certreq -keystore myhost.jks -alias myHost > myHost.csr
In the command, key alias name, myHost, should same with the key alias in step 1.

3.In Certificate signing requests tab, click Import to import the myHost.csr to
RKIDemo.xdb created before.

X Certificate and Key management

Private Keys | Certificate signing requests | Certificates = Templates | Revocation lists

Internal name = commoniame Signed
A% MyHost MyHoSL “Unhandied HNew Reduest
J.w..__. MyOwner MyOwner ‘(Signed Export
Import

Show Details

Delete

Database: /home/disk500g/temp/remotelyKeyinjectionDemo/RKIDemo.xdb

Figure 11. Certificate signing requests of Main window after import host CSR

4. Sign the MyHost CSR by MyOwner. Set the proper valid time and the key usage flag
according key loader root cert in TerminalCertificateGuide en.pdf, as follows:

X Certificate and Key management

Private Keys | Certificate signing requests | Certificates | Templates | Revocation lists

Internal name = commeonMName Signed

ATZ® MyHost MyHost

J.v‘._ MyOwner
=

New Request

MyOGwner Exporkt

Import

Show Details

Delete

Database: /home/disk500g/temp/remotelyKeyinjectionDemo/RKIDemao.xdb

Figure 12. Sign of Right click menu

12

X Certificate and Key management

Create x509 Certificate

Source | Extensions Key usage | Nelscape

Signing request
B sign this Certificate signing request
B Copy extensions from the request

[_| Modify subject of the request

Signing

Advanced

| MyHoskt

Show reguest

) Create a self signed certificate with the serial

@ Use this Certificate for signing b

Signature algorithm

Template for the new certificate

| [default] ca

MyOwner

| SHA 256

| Apply extensions

| | Apply subject | | Apply all

§ J

Cancel

Figure 13. Source of Create X509 Certificate

X Certificate and Key management

Create x509 Certificate

A Sl

Source | Extensions | Keyusage | Netscape @ Advanced
X509v3 Basic Constrainks Key identifier
Type | Not defined | [] Subject Key Identifier
Path length | | [critical] Authority Key identifier
Validity Time range
Mot before [2018-03-09 07:55 GM1|_~ | (20 N | | vears = ply.
Mot after ;_-_2038—03—09 07:55 GM1| ~ | [] Midnight [| Localtime [| Mo well-defined expiration

¥509v3 Subject Alternative Name |

Edit

X509v3 Issuer Alternative Name

Edit

X509v3 CRL Distribution Points

Edit

Authority Information Access | OCSP

Figure 14.

13

Edit

Cancel

Extensions of Create X509 Certificate

X Certificate and Key management

Create x509 Certificate

Source Extensions Key usage MNetscape Advanced

XS509v3 Key Usage

Critical

Digital Signature
Key Encipherment k
Data Enciphermenk
Key Agreement
CRL Sign
Encipher Only
Decipher Only
Key usage

o

X509v3 Extended Key Usage

|| Critical

TLS Web Server Authentication
TLS Web Client Authentication
Code Signing

E-mail Protection

Time Stamping

Microsoft Individual Code Signing
Microsoft Commercial Code Signing
Microsoft Trust List Signing
Microsoft Server Gated Crypto
Microsoft Encrypted File System
Metscape Server Gated Crypto
Microsoft EFS File Recovery
IPSec End System

IPSec Tunnel

IPSec User

IP security end entity

Microsoft Smartcardlogin

OCSP Signing

EAP over PPP

EAP over Lan

KDC Authentication

Cancel

Figure 15. Key usage of Create X509 Certificate
Click OK, the signing process has finished and the host certificate has been created.

5. Click Certificates tab, find MyHost certificate.

-
- X Certificate and Key management |‘=' = P |
File Import Token Extra Help
| Private Keys I Certificate signing requests | Certificates Templates | Rewocation lists |
o »
Internal name commonMame CA Serial Ex

Hew Certificate

4 v Myowner dasg
-
m MyH .. MyHost

,{ Ye= 2175D4A0FT2B3DEC 20
440C0A3D2FS950491 20

Export

€| 1n |

Import

Show Details

Delete

Import PECS#12

Import PECS#T

Plain View

[
[
[
[
[
[
[
l

Database: C:/Users/Administrator/Documents/testxdb

.-Searc h

Figure 16. Certificates of Main window after host certificate created

6. Select MyHost certificate, click Export

14

X Certificate and Key management L, 2 s

Certificate export ﬁk—*:‘
Hame MyHost
Filename C:iUserstAdministratoriMyHost pem L |

Concatenated text format of the complete certificate
chain in one PEM file

Export Format
FEM chain (% pem) fae

[ok || Cencel

Figure 17. Certificate export
7. Click OK, then get the host certificate.

4.4 Prepare For POS terminal

Initialization

There are two ways to do certificates initialization:

1. Configure the new owner cert file and host key loader cert file from wizarview, after the
POS terminal restart and connect to network, it will get the new owner and host key
loader cert file.

2. Send the owner cert file and host key loader cert to us, we will create an initialize APK.
Run the APK to do initialization.

Normally, customer use wizarview to do the initialization.

S Initialization

After initialize the POS terminal , it is ready to remotely key injection.

6 Demo System

Please prepare certificates for POS terminal and remote injector according
as chapter 4

The server application: RemoteKeyInjectServer (eclipse project)
The client application: InjectKeyDemo (android-studio project)

6.1 Functions

® POS terminal Agent(client) ask Host to inject the MK/SK or DUKPT keys to termnal.

15

® POS terminal Agent(client) ask Host to get check data to check the key injecting.
® MK/SK or DUKPT initial key component could be updated in Host’s configure file,

6.2 Running RemoteKeyInjectServer

1. Import RemoteKeylInjectServer into eclipse
2. Find class com.cloudpos.rki.Starter.java
3. Edit keylist.txt file, and add your key information.Such as

key type: 1 dukpt key 2 master key 3 transport key
H##

dukpt key

1.sn = key_index, usage, counter, ksn, initial key

H##

usage, O:PIN Key, 1:MAC Key, 2:Data Key

##

master key

2.5n = key_index, hex_master_key(length: 32 or 438)
H##

transport key

3.5n = key_index, hex_transport_key(length: 32 or 48)
H##

1.WP15461Q00002422 = 2, 2, o, FFFFa876543210EO0,
6AC292FAA1315B4D858AB3A3D7D5933A
2.WP15461Q00002422 = 9, 38383838383838383838383838383838

4. Click the right mouse button --> Run As --> Java Application

6.3 Running InjectKeyDemo

1. Import InjectKeyDemo into Android-Studio
2. Edit SSLConnect.java file, and enter your own IP address as host value

// Change to your own host address
private String host = “121.199.23.212”;
// Change to your own host port

private int port = 11060;

3. Connect terminal to your computer
4. Runing the project and install it into terminal.
5. The terminal screenshot:

16

InjectKeyDemo

REQUEST INJECT MASTER KEY

REQUEST INJECT TRANSPORT KEY

REQUEST INJECT DUKPT KEY

Figure 18.
Click “REQUEST INJECT MASTER KEY” button will trigger following activities:
® Read Authlnfo from HSM
Send AuthInfo to remote server
Read master key from remote server
Import key information into HSM

Request cipher data information which is encrypted by key from remote server

Click “REQUEST INJECT TRANSPORT KEY” button will trigger following activities:
® Read Authlnfo from HSM

Send AuthInfo to remote server

Read transport key from remote server

Import key information into HSM

Request cipher data information which is encrypted by key from remote server
Click “REQUEST INJECT DUKPT KEY” button will trigger following activities:
® Read Authlnfo from HSM

Send AuthInfo to remote server

([J
® Read dukpt key from remote server
® [mport key information into HSM

6.4 Secure Communication

In order to ensure the security of communication, the demo application uses two-way SSL

17

links and TLSv1.2 protocol.

The server-side key store: ks-server.jks and ts-server.jks

The ks-server.jks path: RemoteKeyInjectServer/ks-server.jks
The ts-server.jks path: RemoteKeylInjectServer/ts-server.jks

The client-side key store: ks-client.bks and ts-client.bks
The ks-client.bks path: KeyInjectDemo/app/src/main/assets/ks-client.bks
The ts-client.bks path: KeyInjectDemo/app/src/main/assets/ts-client.bks

Notice:
When the application running in production, please replace key store files to ensure security.

6.4.1 Portecle Usage

Key store tool recommendation: Portecle
Download url: https://sourceforge.net/projects/portecle/

Running tool: java -jar portecle.jar
1. Crate server-side key store: ks-server.jks

This process create keystore that server project used.
.,ﬁ" Portecle = B EE_'.

File Tools Examine Help

B 2 malg]e

@] Alias Name New Keystore Type — = adified I

Select the type of the new Keystore: |

m JKS
) PKCS #12

) JCEKS

1 JKS (case sensitive)
(1 BK3

) BKS-V1

3 UBER

() BCEKS

Pl T

DK Cancel

Mo keystore loaded

Figure 19.

18

https://sourceforge.net/projects/portecle/

¥ [Untitled] - Portecle p & lalE 22 [
File Tools Examine Help
SAEEL A EEEE R
/| Alias Name Last Modified
ra | E |-\

Generate Key Pair

Key Algorithm:

key Size:

i_» DSA @ RSA

|| OK Cancel

Keystore type: JKS, provider: SUN, size: 0 entries

Figure 20.

19

I§ [Untitled] - Portecle

= 3| = |

NEIEE

File Tools Examine Help

"

Generate Certificate

@l Alias Mame

Common Name (CM)

Signature Algorithm:

Organisation Unit (OL):
Organisation Name (O}
Locality Mame (L)

State Mame (3T)

Email (E):

Subject Alternative DMS Mame:

SHAZEE6WIthRSA

Walidity (days):

365

ks-senver

T

Country (C):

Edit the certificate contents at above picture:

20

I oK Cancl
Keystore type: JKS, provider: SUN, size: 0 entries
Figure 21.

JH' [Untitled] - Portecle

= B %

File Tools Examine Help

Key Pair Entry Password

B)=|6)8 B8 &8 RKR|e
M| Alias Name Last Modified
, S

Enter Mew Password:

Confirm New Password:

LR

mnmww

QK || Cance|

| Keystore type: JKS, provider: SUN, size: 0 entries

™

Figure 22.

ks-server.jks has created.

21

[T [Untitled] - Portecle = @3 8= |
File Tools Examine Help
Blalml|gz 8o s ek e
[Tl| Alias Mame Last Modified
& ks-server 2019-11-11 To*F0BRT 01453083

Set Keystore Password = |

Enter New Password: caven |

Confirm Mew Password: Treee |

OK Cancel
Keystore type: JKS, provider: SUN, size: 1 entry
T L]} TT T
Figure 23.

22

I [Untitled] - Portecle

=@ _

Iz

File Tools Examine Help

NIEREITICEITTE N
| Al ‘[fT Save Keystore As |£
= i

Save In: |2 Local Disk (F3) - E

[58d9ddad2146e4b7af] DTLFolder

] 360downloads] eclipse-workspace

3 cert 3 iniLibs

[cloudposSDKInterfacelmpl_001_en-slim[—5 lotenetsoft-0_6_3_3

[DiffFingerprint(1)] networkdownload

3 download] skypeworkspace

1] i | [»

File Name: |ks-server jks |

Files of Type: |Java Keystore Files (* Jks;cacerts) -

Save Cancel

\

Keystore type: JKS, provider: SUN, size: 1 entry

Figure 24.

2. Create ts-client.bks
This process export certificate from server keystore, put it to trust store of client app.

Right click ks-server, click export,

23

I [Untitled] - Portecle

= | B

Export Type

) PkiPath

Export Format
"+ DER Encoded

) PKCS #7

) PKCS #12

@ Head Certificate
i Cerificate Chain
1 Private Key and Certificates

m PEM Encoded

oK

Cancel

File Tools Examine Help

Ga B8 8 8B RK @

EI Alias Name Export Keystore Entr}r'ks—ser...l. P | odified

&2 ks-server 11-11 T4R 068401530831

|Keysmre type: JKS, provider: SUN, size: 1 entry

Figure 25.

24

I [Untitled] - Portecle

File Tools Examine Help

nlaalss e

wx]e

/@) A

& ks

‘L‘T Export certificate

Look In:

232 Local Disk (F:)

oo-
o-o-

testcase_app_install.pem
tizigned by WizarPOS).crt[&] testcase_owner.crt
totapps_fangwei2.pem

4] Il ¥
File Mame:; KS-sernver.cer |
Files of Type: |X.509 Cerificate Files (*.cer;* crt;*.cert*. pem) -

Export || Cancel

Keystore type: JKS, provider: SUM, size: 1 entry

Figure 26.

25

J;T Fi\ks-server,jks - Portecle

2 JKS

) PKCS #12

() JCEKS

1 JKS (case sensitive)
W) BKS

(71 BKSYV1

{73 UBER

. BCEKS

(3 GKR

Select the type of the new Keystare:

Cancel

= @]
File Tools Examine
Ble| 2|8 e B8R e
m| Alias Name New Keystore Type ! |odified
&% ks-server 1-11 4068401430831

Keystore type: JKS, provider: SUN, size: 1 entry

Figure 27.

26

I Wntitled] - Portecle l=l@] =

File Tools Examine Help

SEEIEI Bl Bl EIEE

@] Alias Name Last Modified

L’T Impaort Trusted Certificate J

LookIn: | Local Disk (F2) - ==

HB_App_Root_Cert_1.crt otaam
HB_Terminal_Owner_Root_Cert(signed by WizarPO3).crt[&] testca

KeylnjectDemo_MyOwner_1.crt [E] testca
| ks-server.cer |] totapp.
MyHost.crt
MyOwner.crt

[»

q] I

File Name: |I<s—ser'u'er.cer |

Files of Type: |X.509 Cerificate Files (*.cer;*.cit*.cert*. pem)

Impaort || Cancel

Keystote ype-Bres, proviier 55, SIZE- U BTITES

Figure 28.

27

I [Untitled] - Portecle

|= | = | BE |

File Tools Examine Help

Gl=8|8& 8 8 & & K|
| Alias Name Last Modified
Import Trusted Certificate | = |

®©

Could not establish a trust path for the cerfficate.
The cerficate information will now be displayed after
which you may confirm whether or not you trust the
certificate.

keystore type: BKS, provider: BC, size: 0 entries

Figure 29.

28

i LfT Pl aiale 1 Pl ke ol | — [=]
—| Certificate Details for ks-server.cer’ |_EE_
Eil
= Certificate 1 of 1
: [<]
] Version: |3

Subject: CM=ks-server, OQU=IT, O=testa, L=testb, 3T=testc, C=LI3, EMAILADDRES
lssuer: Ch=ks-server, QL=IT, O=testa, L=testb, ST=testc, C=U3, EMAILADDRES
Serial Number: 5DCA 3126
Walid From: 2019-11-11 T4-06074 0050631
Valid Until: 2020-11-10 T-4-06874 005 0631
Public Key: [R3A (2,048 bits)
Signature Algorithm: SHAZSE6wIthRSA
SHA-1 Fingerprint. 03 44:4F60:96 AE19:BB:84:01:19:07:5A13: 8278608237 4E

MD5 Fingerprint. |B5:A5:83:94:6E 28 7C-80D:7AIF.BT.E9:F56D:82:54

Extensions PEM Encading

OK

il

Figure 30.

29

I [Untitled] - Portecle (=|=] B8]

File Tools Examine Help

Bla @8 B8 L8 e E &K

M| Alias Name Last Modified
Trusted Certificate Entry Alias | = |
Enter Alias: ft=-client |
|I oK Cancel

Keystare type: BKS, provider; BC, size: 0 entries

Figure 31.

30

T [Untitled] - Partecle ==

File Tools Examine Help

Ola|E|8 B & E|8 K|

@/ Alias Name Last Modified
EE 20191113 L 1004305220
Set Keystore Password S |

Enter Mew Password: | |

Confirm New Password: | |

|| Ok I Cancel

Keystore type: BKS, provider: BC, size: 1 entry

Figure 32.

31

I Wntitled] - Portecle

File Tools Examine Help

nlalmlgzssle s ale]l

m| Al

gT Save Keystore As

& ts

Save In: |22 Local Disk (F) - E

3 58d9ddad2146e4b7 3f 3 eclipse-workspace
3 360downloads 3 jniLibs

3 cert 7 lotenetsoft-0_6_3 3
5 cloudposSDKInterfacelmpl_001_en-slim [networkdownload
[DiffFingerprint(1)] skypewarkspace
] DTLFolder =0

q] M |

[»

File Mame: ts-client bks

Files of Type: [BKS Keystore Files (*.bks)

Save

Zancel

Keystore type: BKS, provider: BC, size: 1 entry

Figure 33.

3. Create client-side key store: ks-client.bks

This process create keystore that client app used.

32

cr;T Fits-client.bks - Portecle

| = | =

Select the type of the new Keystore:

) JKS

() PKCS #12

() JCEKS

i JKS (case sensitive)
(W) BKS

3 BKS-V1

{73 UBER

(Z} BCEKS

3 GKR

O Cancel

Eile Tools Examine Help

Bla=o)g s s e za8e

Ijlj Alias Name New Keystore Type " |odified

[=] ts-client 1-12_FEE 1084230452280

| Keystore type: BKS, provider: BC, size: 1 entry

Select BKS at this window, then click OK, the other process is like create ks-server.jks.

4. Create ts-server.jks

Figure 34.

This process export the client certificate, put it to trust store of server project.

33

I Fiks-client.bks - Portecle

File Tools Examine Help

NI EITICLIEY

alle]

1 Alias Mame

MNew Keystore Type : EE_

¥ ks-client

Select the type of the new Keystore:
w JKS

i PKCS #12

1 JCEKS

1 JKS (case sensitive)

i BKS

£ BKS-V1

{71 UBER

) BCEKS

Ok Cancel

odified

1-13 10843743 363

]Keysmre type: BKS, provider: BC, size: 1 entry

Figure 35.

Select JKS at this window, the other process is like Create ts-client.bks.

6.5

Agent in

(InjectKeyDemo)

6.5.1

Manifest and Permissions

The demo application needs following permissions:

POS

terminal

<!-- Access inject key service permission -->

<uses-permission

android:name=""android.permission.CLOUDPOS_REMOTE_KEY_ INJECTION" />

6.5.2 Source Code Structure

The main class diagram

34

pkg

MainActivity SSLConnect

- sslConnect : SSLConnect

+ connect() : void
+ dolnjectMasterkKey() : void +writeAndRead(data : byte[]) : byte[]
+ dolnjectDukptiKey() : void + disconnect() : void

Keylnjector

+ getAuthinfo() : Authinfo

+ importKeyinfo(keyinfo : byte[]) : void

+ validateMasterKey(validData : byte[]) : boolean
+ validateDukptiey(validData : byte[]) : boolean

MainActivity.java

It provides a demo UI which can operate by user.

Click “REQUEST INJECT MASTER KEY” will call doInjectMasterKey method.

Click “REQUEST INJECT TRANSPORT KEY” will call doInjectTransportKey method.
Click “REQUEST INJECT DUKPT KEY” will call doInjectDukptKey method.

SSLConnect.java

It provides a secure connection to remote inject server. If you want to running application and
connect to your own remote inject server, you must modify the host and port information in
SSLConnect.java. Such as:

// Change to your own host address
private String host = “121.199.23.212”;
// Change to your own host port

private int port = 11060;

The aidl interface, IKeyLoaderService provides an enter to operate PIN Pad. Example code:

interface IKeyLoaderService {
int importKeyInfo(in bytel[] keyInfo):
byte[] getAuthInfo();
}
//bind aidl service
private boolean startlnjectKeyService(Context context) {
ComponentName comp = new ComponentName (
”com. wizarpos. security. injectkey”,

” . . - - . . . ”
com. wizarpos. security. injectkey. service. MainService”) ;

35

boolean isSuccess = startConnectService (this, comp, this);
return isSuccess;

}

protected synchronized boolean startConnectService(Context context, ComponentName comp,
ServiceConnection connection) {

Intent intent = new Intent();
intent. setPackage (comp. getPackageName ()) ;
intent. setComponent (comp) ;

boolean isSuccess = context.bindService(intent, connection,
Context. BIND AUTOQ CREATE) ;

Logger. debug(” (%s)bind service (%s, %s)”, isSuccess, comp. getPackageName (),
comp. getClassName ()) ;

return isSuccess;

}
6.6 Host
.
6.6.1 Main data structure
pkg
MessagePack CKeylinfo
T - authinfo : Authinfo
; + build() : byte[]
\\/ + setMasterkey(keylndex : int, key : byte[]) | CKeyinfo
+ setTransportKey(keylndex - int, key : byte[]) . CKeyinfo
Authinfo | > +setDukptKey(keyindex: int, reserved : int, ksn : bytef], counter: int, key : byte[]) : CKeyinfo
+ Authinfo(msg : byte[]) : void /:\
: DukptKeyinfo
PReyinfo - reserved : byte[]

keyType : byte - ksn : byte[]

keyindex : byte - counter : byte[]

+ parse() - PKeylnfo “inlielReyedsl]
Lll + build() : byte[]

MasterKeylnfo

keyLength : byte TransportKeylnfo

#reserved byte K

#key: byte[] + build() : byte[]

+ build() : byte[]
Figure 36.

MessagePack.java

It’s the enter class that communication with POS terminal.

AuthlInfo.java
There is an same name AuthInfo file in host with Agent in POS terminal. It’s used to parse

36

auth info from POS terminal. The class file full name: com.cloudpos.rki.pinpad.Authlnfo.
Example:

byte[] data = {};
AuthInfo authInfo = new AuthInfo (data);

CKeylnfo.java

Create cipher key info such as master key that will be injected into POS terminal can use
CKeylnfo. The class file full name: com.cloudpos.rki.pinpad.CKeyInfo

Example about master key:

CKeylInfo cKeyInfo = new CKeyInfo (authlnfo) ;
byte[] data = cKeylnfo. setMasterKey (keyIndex, key).build();

Example about dukpt key:

CKeylInfo cKeyInfo = new CKeyInfo (authlnfo) ;
byte[] data = cKeyInfo. setDukptKey (keyIndex, ksn, int counter, key).build();

6.6.2 Configuration file

Path: RemoteKeylnjectServer/config.properties
Content

Inject server port
localPort=11060

The ssl key store
keystore. path=ks-server. jks

keystore. pass=wizarpos

The ssl trust key store
truststore. path=ts—server. jks

truststore. pass=wizarpos

PINPad key store

pinpad. keystore=MyHostSelf. p12
pinpad. keystore. passwd=myhost
pinpad. key. alias=MyHostSelf
pinpad. key. passwd=myhost

key length
key. len. q2=32
key. len. q1v2=32
key. len. k2=32

37

7 POS terminal Key Injection API
Guide

7.1 Key Injection AIDL Java API

7.1.1 getAuthlnfo
byte[] getAuthinfo()

This API let the application to get the authentication information
buffer from HSM module. The AuthInfo buffer format is described below.

i PubKeyP .
Field PubKeyP Random SN length SN Signature
Length
Length
4 4096 32 1 31 256
(byte)

PubKeyP Length: 4 bytes little—endian. It’ s the real length of the

contents in next PubKey field

PubKeyP: Fixed 4096 bytes buffer to store the PubKey in simple

certificate in PEM format
Random: Fixed 32 bytes random number.
SN Length: The real length of contents in next SN field
SN: Fixed 31 bytes buffer to store the SN.

Signature: Fixed 256 bytes buffer to store the signature.

7.1.2 importKeylInfo
int importKeylInfo(in byte[] KeyInfo)
This API let the application to import the KeyInfo which is transferred
from Host. The KeyInfo buffer format is described below.

PubKeyH i
Field uoRey PubKeyH Random Cipher Signature
Length KeyInfo
Length
4 4096 32 256 256
(byte)

PubKeyH Length: 4 bytes little-endian. It’ s the real length of the

contents in next PubKey field

PubKeyH: Fixed 4096 bytes buffer to store the Host public key in simple

38

certificate in PEM format.

Random: Fixed 32 bytes random number.

Cipher KeyInfo: The fixed 256 bytes buffer. It store the cipher text of
the KeyInfo data, which is encrypted by POS terminal public key. The plain
text of the KeylInfo buffer has two format. The format depends on the first
byte (KeyType) of the KeyInfo:

KeyType=1. DUKPT schema:

Field KeyType | Keylndex | Reserved KSN Counter Irlggiﬂ
Length

1 1 2 8 4 16
(byte)

KeyType: 1 means DUKPT key.

KeyIndex: The index number of this DUKPT key. We support 3 suit of DUKPT.
KSN: The Initially Loaded Key Serial Number.

Counter: The initially counter.

Initial Key: The initially loaded PIN entry device key.
Reserved: Two bytes, byte[1] is for key usage, 0:PIN Key, 1:MAC Key, 2:Data Key,
byte[0] is reserved. From our demo server, we set OxFF, that means, the

dukpt key has not designated use, so you can use it to calculate pinblock, or mac....

KeyType=2, 3. Master Key/Session schema:

. Key
Field KeyType | Keylndex Length Reserved Key
Length
cne 1 1 1 1 24/32
(byte)

KeyType: 2 means master key, 3 means transport key.

KeyIndex: The index of this master key. We support 10 suit of master

key/session key.
Key Length: The real length of the Key field. It can be 16 or 24.

Key: The fixed 24 or 32 bytes buffer to store master key or transport key. For
Q1-4G and Q2/K2, the length is 32, for Q1, the length is 24.

Reserved: Not used, please set 0.
Signature: Fixed 256 bytes buffer to store the signature of the Random
+ Cipher KeyInfo.

7.2 Permission

To access the key injector API, the application should declare the

proper permission in its AndroidManifest file.

<!-- Access inject key service permission -->
<uses-permission android:name="android.permission.CLOUDPOS REMOTE KEY INJECTION"/>

39

	1Summary
	2Definitions
	3Key Injection
	3.1Core Process
	3.2Connection Protection
	3.3POS terminal Initialization

	4Generate Public Keys
	4.1Create an XCA DB
	4.2Create Owner Key Pair
	4.3Create Key Injector Host Key Pair
	4.4Prepare For POS terminal Initialization

	5Initialization
	6Demo System
	6.1Functions
	6.2Running RemoteKeyInjectServer
	6.3Running InjectKeyDemo
	6.4Secure Communication
	6.4.1Portecle Usage

	6.5Agent in POS terminal (InjectKeyDemo)
	6.5.1Manifest and Permissions
	6.5.2Source Code Structure

	6.6Host Application(RemoteKeyInjectServer)
	6.6.1Main data structure
	6.6.2Configuration file

	7POS terminal Key Injection API Guide
	7.1Key Injection AIDL Java API
	7.1.1getAuthInfo
	7.1.2importKeyInfo

	7.2Permission

